
.IJNC;&S$SIFIED .ATER COPY - FOR REPRODUCTION PURPOSES

2T.3IMENTA TIONPAGE
1b. RESTRICTIVE MARKINGS UI~ I t .A.AD-A98 4 7 LECTE

. I 3.8 46 DISTRIBUTON,AVAILILIT OF REPO
2b. DECLASSIFICATION IOOWNGRADIN ULE Approved for public release;

. I distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

SOR-88-7

Ba. NAME OF PERFORMING ORGANIZATION lb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Princeton University Ij (If_________ U. S. Army Research Office

6c. ADDRESS (Oiy, State, WW, ZIP Code) 7b. ADDRESS (City, State, and ZP Code)
Dept. of Civil Engineering/Operations Researci P. 0. Box 12211
Princeton, N.J. 08544 Research Triangle Park, NC 27709-2211

Ia. NAME OF FUNDING /SPONSORING 1b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if &1cab)

U. S. Army Research Office

Or. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

P. 0. Box 12211 PROGRAM PROJECT TASK WORK UNITELEMENT NO. NO. NO. CCESSION NO.
Research Triangle Park, NC 27709-2211

11. TITLE (/n€/ude Security Clasiftcation)

The Analysis of Averages and the Analysis of Variance

12. PERSONAL AUTHOR(S) Colin Goodall

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Do) IS. PAGE COUNT
Technical FROM TO 1 April 1988 30

16. SUPPLEMENTARY NOTATION The view, opinions and/or findings contained in this report are those

of he authr(f).and sh uld not be construed as an fficial Dartment of the Army position,

17. COSATI CODES 18. SUBJECT TERMS (Continue on revera if necessary and identify by block number)
FIELD IGROUPJ SUB-GROUP

(19. ABSTRACT (Contnue on reverse ff necessary and identify by 61orA number)
-- ,In the analysis of averages and analysis of variance of a balanced array, repeated
sweeping out of margin summaries has several advantages. These include the use of
resistant summaries as alternatives to the mean, an exploratory emphasis, and computational

convenience.- The advantages offset the computational inefficiency of the sweep method
relative to the Yates algorithm. However, analysis of averages and variance is not
straightforward using the sweep function commonly found in data analysis software. Part I
describes an invariant data structure and enhancements to sweep to provide computation

of degrees of freedom and organization and annotation of a sequence of sweeps. The usual
analysis of variance and median polish are 9fdefaults"of the enhanced functions. Part II
and the Appendix detail the specific implementation in S. /

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
MUNCLASSIFIEDIUNLIMITED D SAME AS RPT. C3 OTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (AnC/ude Area Code) 22c. OFFICE SYMBOL
Colin Goodall 609-452-6487

DO FORM 1473,94 mAi 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obslete. UNCLASSIFIED

w P~

The Analysis of Averages and the Analysis of Variance

Part I. The Sweep Operator and Analysis of Variance
Part Hl. Implementation in the New S Environment

Appendix. Examples, manual pages, and S functions

Technical Report #SOR-88-7

1 April 1988

Colin Goodall

Program in Statistics and Operations Research
School of Engineering and Applied Science

Princeton University
Princeton, NJ 08544

ABSTRACT

In the analysis of averages and analysis of variance of a balanced
array, repeated sweeping out of margin summaries has several advantages.
These include the use of resistant summaries as alternatives to the mean,
an exploratory emphasis, and computational convenience. The advan-
tages offset the computational inefficiency of the sweep method relative to
the Yates algorithm. However, analysis of averages and variance is not
straightforward using the sweep function commonly found in data analysis
software. Part I describes an invariant data structure and enhancements to
sweep to provide computation of degrees of freedom and organization and
annotation of a sequence of sweeps. The usual analysis of variance and
median polish are "defaults" of the enhanced functions. Part II and the
Appendix detail the specific implementation in S.

I.

-2-

Part I. The Sweep Operator and Analysis of Variance

1. Introduction

Three computational approaches to the analysis of an additive model for a response with
factors at 1, 2, 3 or more levels are 1. regression with dummy variables, 2. explicit computation
of formulae for effects, 3. repetitive use of the sweep operator. In broad terms the least-squares
regression approach (1) is best able to handle unbalanced tables, whereas an approach that utilizes
the orthogonal structure (2) is computationally the fastest. For example, in SAS the GLM pro-
cedure handles the general linear model and the ANOVA procedure is optimized for balanced
tables. The earliest algorithms for balanced data are those of Yates (1934, 1937). Modem gen-
eralizations of these algorithms (Schlater and Hemmerle, 1966, Chambers, 1977) are extensive
and not trivial to code. The repetitive use of the sweep operator (3) is computationally the
slowest of the three approaches, but has compensating advantages. These include:

a. Ease of generalization to statistical summaries other than the mean, as in median polish of
2-way tables (Tukey, 1977) and of 3-way tables (Cook, 1985). A careful algorithm for
median polish (Velleman and Hoaglin, 1981) is very close to repetitive use of sweep. Other
summaries include trimmed means (Emerson and Hoaglin, 1981, Becker and Chambers,
1984), the low-median (Siegel, 1983), and M-estimators of location.

b. An exploratory emphasis. An analysis of variance table is the conventional summary of the
role of the various factors in a multi-way table. A more detailed decomposition is often
desirable, as in graphical exploratory analysis of means and variance (Johnson and Tukey,
1987, Johnson, 1988). Prior to computing the ANOVA table, we compute statistical sum-
maries of various margins of the table, paying special attention to location, scale, and
outliers of the various batches of numbers involved. The repetitive use of sweep yields a
sequence of tables of effects and residuals which are readily displayed and readily under-
stood. Cobb (1984) gives examples of these tables, along with discussion and motivation
for this algorithmic approach to ANOVA.

c. Computational convenience. A sweep operator is very easy to program and is standard in
high-level software for data analysis, including APL, ISP (Donoho and Huber, 1986, Abra-
hams, 1985) and both old and new S (Becker and Chambers, 1984, Becker, Chambers, and
Wilks 1988). If it is not explicitly included, the sweep operator is easily programmed using
a function such as apply in S or reduce in ISP, which applies an arbitrary function to sec-
tions of an array. To analyze an additive model the arguments to sweep comprise the array,
a 0, 1, 2 or more-way margin, and a statistical summary. Sweep returns the array minus the
statistical summaries of the respective sections of the array. James and Wilkinson (1971)
discuss the mathematical basis for use of the sweep operator.

For
2. Enhancements to Sweep It

The sweep operator does not itself provide the ease of use, manageability, and completeness C]
that we often desire. An enihanced sweep, called effect say, includes several additional features. d

The implementation of effect in new S is described in Part II. , _

1. An invariant data structure. The arguments to effect can be the result of a previous call to
effect, plus any margin vector and statistical summary. Effect can be called repetitively ,
with margins in any order. For example, in an analysis by means the main effects of the Ity Codes
first factor of a table are zero when the first and second factor interaction effects have and/or

c lal

% 0

-3-

already been removed.
2. Degrees offreedom for analysis by means. An array of residuals is constrained along one or

more margins. These constraints, discussed in detail in Section 3, determine the degrees of
freedom of the residuals. When the residual array is swept again, the constraints will possi-
bly increase and the residual degrees of freedom possibly decrease. The difference between
the two residual degrees of freedom is the degrees of freedom of the effects. In the above
example (para. 1.) the corresponding main effects degrees of freedom are zero. The invari-
ant data structure includes the constraints, which are updated by effect. For convenience the
rcsult of effect includes Lhe degrees of freedom of the effects and of the residuals and argu-
ment arrays.

3. Summary statistics for the effects, residuals and parent arrays. In analysis by means the
usual summary statistic is the sum of squares. For this and other analyses, alternative sum-
maries may be desired. In general we are interested in a vector of summary statistics for
each section of the array orthogonal to the chosen margin. The vector may include the sum
of squared and absolute values, several measures of scale, the MAD and a standard devia-
tion say, the number of outliers in the respective arrays, and other summaries. To ensure
comparability between the summaries for the effects, residuals and parent array, the subar-
ray of effects is duplicated to an array with the full dimensions (as in Cobb, 1984) before
computing the summaries.

4. Organized and annotated results. The repeated use of effect produces multiple sets of
results. A higher-level utility, called ANOVA say, collects together the effects, degrees of
freedom, summary statistics and residuals from the repeated calls to effect. Each com-
ponent of these four lists is labeled with the respective margins. A conventional anova table
can then be obtained with very little additional effort.

5. Conventional analyses are easy with anova. Most additive analyses involve either a full
analysis of variance, a main effects analysis, a main effects plus 1st-order interactions
analysis, or several iterations of median polish. These are available as default options to
anova.

Cobb (1984) describes an interactive ANOVA program with some of these features. It is
written in BASIC for a 48K Apple II computer and therefore limited. The S environment (Becker -

and Chambers, 1984) includes the sweep operator and has some degree of flexibility, but not
enough to easily support the enhancements. Both S and ISP include functions for the analysis of
one- and two-way tables by means, medians, and some other robust summaries, but general tools
for the analysis of multi-way tables are not widely available with either system. On the other
hand, the New S environment (Becker, Chambers, and Wilks, 1988) has the powerful features
that make programming the effect and anova functions practicable. Part II describes a New S
implementation.

3. Residual Constraints

The invariant data structure returned by effect includes an array of residuals. An attribute
of the residual array is a vector of constraints. The constraints, updated by effect, are used to
compute the residual degrees of freedom. This section describes a spccific formulation of the
constraints attribute.

-4-

The constraints attribute is a logical vector of length 2d, where d is the dimension of the
array. Each element of the vector corresponds to one of the 2 d margins of the array, including the

null margin (overall effect). A convenient association of the vector elements and margins uses
the binary expansions of 0, 1,.. . ,2 d- 1 . For example when d = 5, 19 = 10011 (mod 2), and the
3-way margin containing the 1st, 2nd and 5th factors corresponds to the 20th element of the con-

straints vector.

A key observation is that the residuals array returned by effect is constrained not only on
the margin that is the argument to effect but also on any subordinate margin. For example the
margins subordinate to (1, 2, 5) are 0 (overall), 1, 2, 5, (1, 2). (1, 5), and (2, 5). The residuals
array is constrained on the subordinate margins whether or not an overall analysis, main effects
analysis, or any other call to effect preceded the most recent call. Therefore the constraints attri-
bute is initialized FALSE and the elements corresponding to the margin and its subordinate mar-
gins are set TRUE with each successive call to effect. The indexes in the constraints vector of the g
subordinate margins are easily found by computing the binary expansion of 0, 1,..,2' - 1, where
d is the order of the margin, then inserting 0's into these binary numbers corresponding to the
factors not included in the margin, and converting back to decimal integers.

The degrees of freedom (df) associated with each margin is the sub-product of the respec-
tive elements of the dimension vector of the array, less 1. This is the df for the interaction when

all lower order effects have been removed previously. The df of the residuals array is the sum of
the df associated with each margin for which the constraint attribute is false. If (e 1..... er) is

the dimension vector then
d

Z I'I (e, - 1) = 'ei

Sc{ 1....d)S i=1

The df of the effects is the difference between the df of the parent array and the df of the
residuals. This difference of course depends on the previous analyses. For example the interac-
tion effects for factor I and factor 2 of a 3 x 8 x 5 table have 24 df if there are no previous ana-
lyses, 23 df if the overall mean of main effects for factor 3 is already removed, 16 df if the main

effects for factor I or the (1, 3) interaction is already removed, etc.

i

I.-,

r' ISh ' .*:, .', 8, ,%,' ' 7,.,"o. .,' a "-,/ 'A " ._ ", . /U,', L X.
" . " .;,"- .' . ". > ,- . "-,,'- , t' o. - , d" " "X' '' . . ' 'pp

-5-

Part II. Implementation in Sqpe

Part II sketches the implementation of repeated use of the sweep operator in New-S (Becker
et al, 1987). Complete details are contained in the examples, S manual pages and the function
listings in the Appendix.

1. Invariant Data Structure

The invariant data structure is an array, arr, a so-called effects array, with attributes con-
straints and constraintsdf. The logical constraints vector has length 2**dim(arr), and specifies
the margins on which arr is constrained by previous sweeps, as described in Part I. The integci,
constraintsdf vector is included only for convenience. It is computed once from dim(arr) and
contains the degrees of freedom associated with each margin. The elements of these two attribute
vectors correspond to the margins in binary, not lexicographic order. This ordering is an advan- !
tage for updating (see the description of the subordinates function below), and is not a serious
drawback because, knowing dim(arr), the constraintsdf attribute indicates the corresponding mar-
gins.

Just as dim(arr) both gets and assigns the dimension attribute,

> dim(arr)
[113 85
> dim(arr) <- c(3,8,5)

so we define analogous functions for the constraints attribute
"constraints" <- function(x) attr(x, "constraints")
"constraints<-" <- function(x, ct)
eval(substitute(attr(x, "constraints") <- ct), local = sys.parent(1))

and likewise for the constraintsdf attribute.

The function is.effects tests for the presence of these two attributes, the functions as.effects
initializes the attributes. as.effects conditions its action on is.effects, to avoid overwriting an
existing constraints vector.

"is.effects" <- function(x)
!is.null(attr(x, "constraints")) & !is.null(attr(x, "constraintsdf'))

"as.effects" <- function(x)

if(!is.effects(x)) {
revsubdin <- rev(dim(x) - 1)
ncodes <- 2^length(revsubdim)
prodrow <- substitute(function(y)prod(revsubdim[y]))
attr(x, "constraints") <- rep(F, ncodes)
attr(x, "constraintsdf") <- apply(mod(seq(O, ncodes - 1)), 1, prodrow)}x

Note the use of substitute to ensure proper substitution of the local definition of revsubdim in the
definition of the local function prodrow.

An~f W~~r F mM mKIm M Mn~ VI K A",K;7M AY% M P AI 9 imnn nwqj G

-6-

An example is

> dim(arr)
[1138 5
> is.effects(arr)
[1)F
> arr <- as.effects(arr)
> attributes(arr)
$dim:
[1]138 5

$constraints:
[1] FFFFFFFF

$constraintsdf:
[1] 1 2 7 14 4 8 28 56

In the definition of as.effects, mod is an utility function that computes the expansion of an
integer modulo an arbitrary base. The expansion of a single integer is a vector. An integer
between 0 and 2**dimn(arr) - 1, expanded modulo the default base 2, specifies a margin of arr.

"mod" <-

function(numbers, base = 2, ncol =fioor(log(max(nuxnbers + le-05))/log(base)))
if(any(numbers < 0)) stop("numbers must be non-negative")
mod <- base ** seq(ncol,0)
mode(mod) <- "integer"
res <- outer(numbers, mod, "%/%") %% base
if(base == 2) mode(res) <- "logical"
res

With the default base=2 the conversion is binary, and the output is logical. The logical result
includes the numeric properties of a matrix of 0's and I's, so is a more flexible representation.
The binary conversion of 0:7 is

> mod(0:7)
[,J] [,21 [,31

[1,1 F F F
[2,] F F T
[3,] F T F
(4,] F T T
(5,1 T F F
[6,1 T F T
[7,] T T F
[8,] T T T

The use of mnod base 10 converts integers into rows of digits.

-7-

> mod(seq(5,105,20), 10)
[,I [,21 [,31 a

[I1 0 0 5
[2,] 0 2 5
[3,1 0 4 5

4,1 0 6 5
[5,1 0 8 5
[6,1 1 0 5

mod has a twin function modconc that concatenates a vector to an integer, modulo the given
base. We will use modconc later.

"modconc" <- function(mat, base = 2) {

if(any(mat < 0) 1 any(mat >= base)) stop(paste("digits must be between 0 and", S

base - 1, "inclusive"))
if(len(dim(mat)) == 1) mat <- matrix(mat, nrow = 1)
maxn <- ncol(mat) - 1
mod <- base ** (maxn:O)
as.integer(mat %*% mod)
}

When the same base is used, modconc is the inverse of mod

> modconc(mod(0:7))
[1]01234567

but the two can also be used with different bases. For example

> modconc(a, 10)
[1] 0 1 10 11 100101 110111

is the binary representation of 0:7. p

2. Computation of effects

The effect function is central to the set. Its arguments include the invariant data structure,
the margin over which to sweep, and the "average" function for sweeping with any of its addi-
tional arguments.

"effect" <- function(a, margin, fun, ...
if(is.list(a)) a <- a[["residuals"]]
if(!is.effects(a)) stop("Data is not an effects array; use as.effectso")
seqq <- seq(length(dim(a)))
if(is.logical(margin)) margin <- seqq[marginl
perm <- c(margin, seqq[- margin])
effects <- apply(a, margin, fun, ...)
eff <- aperm(array(effects, dim(a)[perm]), order(perm))
res <- a - eff
list(eftects = effects, residuals = res, arrayofeffects = eff)
I

I

-8-

The argument to effect can be an effects array or a list (the result of a previous call to effect) that
contains a named element residuals that is itself an effects array. The effects array is tested for
the presence of the constraints and constraintsdf attributes. A logical margin is converted to an ii

integer margin. The heart of effect is a modified sweep function. The result is a list that includes ,
the subarray of effects, the residuals array, and an array of effects with the same dimension of the
argument array.

The residuals array must be an effects array. These is done by copying all the attributes of
a to res and then modifying the constraints attribute by setting a subset of the attribute logical
TRUE. (If that margin is already swept the constraints attribute does not change.) The degrees
of freedom for the parent and residuals are then easily computed by summing the elements of
constraintsdf for logical FALSE elements of constraints. The degrees of freedom for effects is
the difference, and may be 0. The last lines of effect become

attributes(res) <- attributes(a)
dimnames(eff) <- dimnames(a)
attr(res, "constraints")[subordinates(margin) + 1] <- T
df.parent <- sum(constraintsdf(a)[!constraints(a)])
df.residuals <- sum(constraintsdf(res)[!constraints(res)])
df.effects <- df.parent -df.residuals
df <- c(df.effects, df.residuals, df.parent)
list(effects = effects, df = df, residuals = res, arrayofeffects = eff)

}9

The arguments of effect also include a summary statistic function, ssfun, by default sum-of-
squares, which returns a vector of summary statistics for each of the effects, residuals, and parent
arrays.

"effect" <- function(a, margin, ssfun = function(x)sum(x2), fun = mean, ...)

ss <- drop(matrix(c(ssfun(efO, ssfun(res), ssfun(a)), ncol = 3))
list(effects = effects, df = df, ss = ss, residuals = res, arrayofeffects = eff)
I

Additional code in effect handles margin 0 (overall effect) and a character-vector margin. A
character-vector margin is matched to c("overall", names(dimnames(a))). Detailed documenta- S
tion and the complete listing of effect is in the Appendix.

The subordinates function updates the constraints attribute. This function computes the
positions in constraints corresponding to margins subordinate to the argument margin. This is
equivalent to finding the integers that have binary expansions with I 's in a subset of the positions
given in the argument, an integer vector. For example, 5, 1, 3 and 0 have binary expansions TT,
FF', TFF and FFF. Each is subordinate to TFT, i.e. the argument vector c(1,3).

_O

-9-

"subordinates" <- function(vec) {
if(vec == 0) retum(O) It
n <- 2length(vec); vec <- rev(sort(vec)); nc <- vec[I

V

mod2 <- mod(seq(O, n - I))
mod2f <- matrix(F, n, nc)
mod2f[, nc + I - vec] <- mod2
modconc(mod2f)

3. Analysis of variance

A complete analysis of variance of the array arr requires 2**dim(arr) calls to effect. A
median polish of a 2-way or higher-way table involves a similar number of calls. anova is a
high-level function to manage the results of these repeated calls to effect, anova concatenates the
effects and residuals elements into lists, and the df and ss elements into a matrix and an array.
The names(dimnames(arr)) attribute of arr labels the factors of arr and is used to construct
character-string names for each margin.

The arguments to anova include the array and a list of margins, in addition to the summary
statistics function and average function with its optional arguments used in effect. A slightly4.
simplified anova function is

"anova" <- function(a, margins, ssfun = function(x)sum(x"2), fun = mean, ...) {
m <- margins; n <- length(margins)
if(is.list(a)) a <- a[["residuals"]]
a <- as.effects(a)
effects <- df <- ss <- residuals <- rowlabels <- NULL
if(is.null(names(dimnames(a)))) namesvec <- seq(length(dim(a)))

else (namesvec <- names(dimnames(a));names(namesvec)<-namesvec}
for(i in l:n) { "

margin <- as.vector(m[[i]])
a <- effect(a, margin, ssfun, fun, ...)
effects <- c(effects, a["effects"])
df <- rbind(df, a[["df"']])
ss <- rbind(ss, a[["ss"]]) S
residuals <- c(residuals, a["residuals"])
if(all(margin == 0)) rowlabels <- c(rowlabels, "overall")

else rowlabels <- c(rowlabels, paste(nanesvec[margin], collapse *

collabels <- c("effects", "residuals", "parent") •
dimnames(df) <- dimnames(ss) <- list(rowlabels, collabels)
names(effects) <- names(residuals) <- rowlabels
list(margins = m, df = df, ss = ss, effects = effects, residuals = residuals)

The subsets function is a utility function which is used to generate the margins, subsets
computes all margins of the argument array, i.e. all subsets of the dimension vector of the array.
An optional argument specifies the sizes of the subsets desired. The subsets are ordered

A oA

_100

lexicographically.
"subsets" <- function(a, sizes = NULL) {
nc <- length(dim(a)); seqq <- seq(O,nc); n <- 2 ** nc
mat <- mod(O:(n - 1))[, nc: 1]
isizes <- apply(mat, 1, sum)
iperm <- order(isizes, I :n)
if(!missing(sizes)) iperm <- iperm[!is.na(match(isizes[iperm], sizes))]
mat <- cbind(c(T, rep(F, n - 1))[iperm], mat[iperm,])
11 <- NULL; for(i in l:nrow(mat)) U <- cl, list(seqq[mat[i,])); 1,

The complete version of subsets (see Appendix) uses the names(dimnames(a)) to construct
a list of character vectors. An additional argument specifies whether to return a logical matrix
instead of a list. Any one of these three forms is a valid argument to anova. Instead of the array,
subsets may also take as argument an integer or character vector; it constructs all subsets of the
specified sizes of the vector. The argument may also be a single integer, nc in the above
definition, which becomes the vector argument seq(O,nc). subsets is a general purpose function
that is useful for all subsets regression and related analyses as well as with anova.

The final call to anova includes arguments orders (sizes) and margins. The default for ord-
ers is all orders but the highest, length(dim(a)). The default for margins is the logical-matrix
result of subsets with arguments a and orders.

"anova" <- function(a, orders = 1 :Iength(dim(a)) - 1,
margins = subsets(as.array(a), sizes=orders, log=T),
ssfun =function(x)sum(x^2), fun = mean, ...) {

4. ANOVA table and polishing

Conventional analyses of a multi-way table include an analysis of variance table. Also,
when the same margin is swept repeatedly as in median polish, corresponding effects are
summed. Two additional functions, anovatable and polish, modify the list returned by anova to
include these features. Each function also eliminates all but the last array of residuals. If desired,
both functions can be used, but only in the order polish then anovatable.

anovatable computes the conventional mean squares, F-ratios, and P-values. To shorten
the result, the df, ss and margins elements are eliminated.

it 5

.

"anovatable" <- function(a) {
nr <- nrow(a$df)
df <- c(a$dfl, 1],a$dflnr,2]); ss <- c(a$ssf, I],a$ss[nr,2]) V
ms <- ss/df
N <- ms/ms[nr+ 1
pv <- l-pf(fv,dfdflnr+ 1])
at <- cbind(dfss,ms,fv,pv)
dimnames(at) <- list(c(dimnames(a$df)[[1]],"residual"),

c("df',"ss","ms","F-value","P-value"))
list(anovatable=at,effects=a$effects,

residuals=a$residuals[[length(a$residuals)]])

The polish function uses a generalization of tapply. The effects element of the result of
anova is a list of data vectors. listapply generalizes tapply to group a list of data vectors, rather
than a vector of data.

"listapply" <- function(Iis,ind,FUN="+") {
if(is.character(FUN)) FUN <- get(FUN)

seqq <- seq(length(ind))
dup <- duplicated(ind); whr <- seqqf!dup]
res <- listo
for(i in whr){

inn <- ind[iI; tot <- 0
for(j in seqq[ind=inn]) tot <- FUN(tot,lis[lI]])
res <- c(res,list(tot))

names(res) <- names(is)[whrI
res

There is a further complication, namely the indices for grouping are themselves margins that
make up either a list or a logical matrix. Since S does not support hashing list elements, a func-
tion intlisttoint converts a list of vectors of non-negative integers into an integer vector. intlist-
toint converts each vector into the integer with binary expansion with 1 's in the given positions
(cf. subordinates). For example c(1,3) expands to 5. :%

-12-

"intlisttoint" <- function(lis) {
val <- integer(length(lis))
for(i in seq(along=lis)) {

vec <- lis[[i]]
if(vec == O)fval[i]_O;next)
m <- rep(F,max(vec))
m[vec] <- T
val[i] <- as.integer(sum(m * 2**seq(O,1ength(m)-l)))

val

The polish function for a list of integer vector margins is •
"polish" <- function(m) [
if(!is.list(m$margins)) stop("margins component must be a list")
list(df=m$df,ss=m$ss,effects=listapply(m$effects,intlisttoint(m$margins)),

residuals=m$residuals[[length(m$residuals)]])

Acknowledgements

The computing used the Sqpe software made available to Princeton University for beta test.
I wish to thank Rick Becker at AT&T Bell Laboratories for his assistance in using the new S, and
Allan Wilks, also at Bell Laboratories, for an encouraging conversation. This research was sup-
ported in part in connection with research at Princeton University sponsored by the Army ,9
Research Office (Durhan), DAALO3-86-K-0073.

7

-13-

References

Abrahams, D.M. (1985). "A tutorial introduction to Berkeley ISP," Documentation, Depart- 0
ment of Statistics, University of California, Berkeley, CA.

Becker, R.A., and Chambers, J.M. (1984). S, An Interactive Environment for Data Analysis
and Graphics, Belemont, CA: Wadsworth.

Becker, R.A., Chambers, J.M., and Wilks, A.R. (1988). The New S Language: A Program-
ming Environment for Data Analysis and Graphics, Draft manual, Murray Hill, NJ:
Bell Telephone laboratories.

Berkeley ISP (1986). Product announcement. Department of Statistics, University of Califor-
nia, Berkeley, CA.

Chambers, J.M. (1977). Computational Methods for Data Analysis, New York: John Wiley. It

Cobb, G.W. (1984). "An algorithmic approach to elementary ANOVA," American Statisti-
cian, 38, 120-123.

Cook, N. R. (1985). "Three-way analyses," in Exploring Data Tables, Trends, and Shapes"
(D.C. Hoaglin, F. Mosteller, and J.W. Tukey, eds.), New York: John Wiley.

Emerson, J.D. and Hoaglin, D.C. (1983). "Analysis of two-way tables by medians," in Under-
standing Robust and Exploratory Data Analysis (D.C. Hoaglin, F. Mosteller, and J.W.
Tukey, eds.), New York: John Wiley.

ISP/DGS/SGS (1985). ISP User's Guide and ISP Command Descriptions, Carlisle, MA:
Artemis Systems.

Johnson, E.G. (1988). "Robust analysis of factorial designs via elemental subsets and outlier
sterilization," Ph.D. Thesis, Department of Statistics, Princeton University.

Johnson, E.G. and Tukey, J.W. (1987). "Graphical exploratory analysis of variance illustrated
on a splittering of the Johnson and Tsao Data," to appear in Design, Data and Analysis
by Some Friends of Cuthbert Daniel (C.L. Mallows, ed.), New York: John Wiley.

PC-ISP (1986). Interactive Scientific Processor, (software package), Carlisle, MA: Artemis
Systems.

Schlater, J.E. and Hemmerle, W.J. (1966). "Statistical computations based upon algebraically
specified models," CACM, 9, 865-869.

Siegel, A.F. (1983). "Low median and least absolute residual analysis of two-way tables,"
Journal of the American Statistical Association, 78, 371-374.

Velleman, P.F. and Hoaglin, D.C. (1981). Applications, Basics, and Computing of Exploratory
Data Analysis, Boston, MA: Duxbury.

Wilkinson, G.N. (1970). "A general recursive procedure for analysis of variance," Biometrika,
57, 19-46.

Yates, F. (1934). "The analysis of multiple classification with unequal numbers in the subc-
lasses," JASA, 29, 51-66.

Yates, F. (1937). "The design and analysis of factorial experiments," Imp. Bur. Soil. Sci. Tech.
Comm., 35.

ih

- 14-

Appendix

Example of effect (infant mortality data)
Example of anova --- analysis by means

Example of anova --- analysis by medians

Manual pages
Functions

9

p

'. ,

Fxample of effect

INFANT MORTALITY DATA (Emerson and Hoaglin, 1983)

> infantmortality
<=8 9-11 12 13-15 >=16

Northeast 25.3 25.3 18.2 18.3 16.3
North Central 32.1 29.0 18.8 24.3 19.0

South 38.8 31.0 19.3 15.7 16.8
West 25.4 21.1 20.3 24.0 17.5

> names (dimnames (infantmortality))_c ("Region", "Education of Father")

> options (digits=2)
> effect (infantmortality, 1)
Error in call to effect: Data is not an effects array; use as.effects()
> effect (as .effects (infantmortality), i)
$effects:
Northeast North Central South West

21 25 24 22

$df:
(1] 4 16 20

$ss:

[l 10477 664 11141

$residuals:
<=8 9-11 12 13-15 >=16

Northeast 4.6 4.62 -2.5 -2.38 -4.4
North Central 7.5 4.36 -5.8 -0.34 -5.6

South 14.5 6.68 -5.0 -8.62 -7.5
West 3.7 -0.56 -1.4 2.34 -4.2

attr($residuals, "constraints"):
(1] T T F F
attr($residuals, "constraintsdf"):
(1] 1 3 4 12

Sarrayofeffects:
<=8 9-11 12 13-15 >=16

Northeast 21 21 21 21 21
North Central 25 25 25 25 25

South 24 24 24 24 24
West 22 22 22 22 22

a
The main effects for region are computed without taking out the
grand mean. Therefore there are 4 = 3+1 degrees of freedom for effects,
and the usual 16 residual degrees of freedom.

p

Example of ariova - -- analysis by means

> a <- anova(infantmortality)
> names (a)
Ell "margins" "df" "ss" "effects" "residuals"
> aSmargins

[,i] (,2]
[1,) F F
[2,] T F
[3,] F T
> a$df

effects residuals parent
overall 1 19 20
Region 3 16 19

Education of Father 4 12 16
> a$ss

effects residuals parent
overall 10420 721 11141
Region 57 664 721

Education of Father 479 185 664
> aSeffects
$overall:
overall

23

SRegion:
Northeast North Central South West

-2.1 1.8 1.5 -1.2

$"Education of Father":
<=8 9-11 12 13-15 >=16
7.6 3.8 -3.7 -2.3 -5.4

> a~residuals [[length (a~residuals) 1]
<=8 9-11 12 13-15 >=16

Northeast -2.95 0.84 1.2 -0.13 1.04
North Central -0.12 0.59 -2.2 1.91 -0.21

South 6.91 2.91 -1.3 -6.37 -2.10
West -3.84 -4.34 2.3 4.59 1.27

attr(, "constraints"):
[l) T T T F
attr%, "constraintsdf"):
Ell 1 3 4 12

The full analysis of variance includes computation of the overall
effect, and effects for Region and Education of Father.
Only the final table of residuals is printed here, instead of
the 3 tables contained in aSresiduals. The usual analysis of variance
table is computed by anovatable.

> anovatable(a)$anovatable:
df ss ms F-value P-value

overall 1 10420 10420 675.4 0.0000
Region 3 57 19 1.2 0.3380

Education of Father 4 479 120 7.8 0.0025
residual 12 185 15 1.0 0.5000

Example of anova --- analysis by medians

The arguments to anova include the function ssff, defined as follows:
> ssff
function (x)

res <- as.single(c(mad(x)/qnorm(O.75), sqrt(var(c(x))), length(boxplot(
x, plot = F)$out)))

names(res) <- c("scaled mad", "std dev", "outliers")
res

> mad
function (x)
median(abs(x - median(x)))

> m <- anova(infantmortality, margins = list(0, 1, 2, 1, 2),
ssfun = ssff, fun = median)

> M,
EDITED RESULTS
$df:

effects residuals parent
overall 1 19 20
Region 3 16 19

Education of Father 4 12 16
Region 0 12 12

Education of Father 0 12 12

$ss:

scaled mad
effects residuals parent

overall 0.00 5.6 5.6
Region 2.08 5.3 5.6

Education of Father 4.52 1.6 5.3
Region 0.82 1.4 1.6

Education of Father 0.00 1.4 1.4

std dev
effects residuals parent

overall 2.2e-15 6.2 6.2
Region 2.3e+00 6.2 6.2

Education of Father 4.le+00 3.8 6.2
Region 7.le-01 3.6 3.8

Education of Father 2.le-01 3.6 3.6

outliers
effects residuals parent

overall 0 1 1
Region 0 1 1

Education of Father 0 3 1
Region 0 5 3

Education of Father 0 4 5

$effects:
$effects$overall:
overall

21

$effects$Region:
Northeast North Central South West

-2.4 3.6 -1.4 0.4

$effects$"Education of Father":
<=8 9-11 12 13-15 >=16
7.4 5.9 -0.45 0 -3.1

FI

Example of anova --- analysis by medians

$effects$Region:
Northeast North Central South West

0.35 -1.1 0.55 -0.55

$effects$"Education of Father":
<=8 9-11 12 13-15 >=16
0.4 0.4 -0.05 0.4 0

$residuals:
$residuals:overall:

<=8 9-11 12 13-15 >=16
Northeast 4.6 4.6 -2.5 -2.4 -4.4

North Central 11.4 8.3 -1.9 3.6 -1.7
South 18.1 10.3 -1.4 -5.0 -3.9
West 4.7 0.4 -0.4 3.3 -3.2

Sresiduals$Region:
<=8 9-11 12 13-15 >=16

Northeast 7.0 7.0 -0.1 0.0 -2.0
North Central 7.8 4.7 -5.5 0.0 -5.3

South 19.5 11.7 0.0 -3.6 -2.5
West 4.3 0.0 -0.8 2.9 -3.6

$residuals$"Education of Father":
<=8 9-11 12 13-15 >=16

Northeast -0.4 1.1 0.35 0.0 1.05
North Central 0.4 -1.1 -5.05 0.0 -2.25

South 12.1 5.9 0.45 -3.6 0.55
West -3.1 -5.9 -0.35 2.9 -0.55

$residuals$Region:
<=8 9-11 12 13-15 >=16

Northeast -0.75 0.8 0.0 -0.35 0.7
North Central 1.55 0.0 -3.9 1.15 -1.1

South 11.55 5.3 -0.1 -4.15 0.0
West -2.55 -5.3 0.2 3.45 0.0

$residuals$"Education of Father":
<=8 9-11 12 13-15 >=16

Northeast -1.2 0.4 0.05 -0.75 0.7
North Central 1.2 -0.4 -3.85 0.75 -1.1

South 11.2 4.9 -0.05 -4.55 0.0
West -2.9 -5.7 0.25 3.05 0.0

The corresponding row and column effects are summed using polish.

> polish (m) Seffects
$overall:
overall

21

$Region:
Northeast North Central South West

-2.1 2.4 -0.85 -0.15

$"Education of Father":
<=8 9-11 12 13-15 >=16
7.8 6.2 -0.5 0.4 -3.1

S Functions anova 1

USAGE:
anova(a. orders=1:Iength(dim(a)) - 1,
margins=subsets(as.array(a), orders, T),
ssfun=function(x)sum(x^2), fun~mean, ...)

ARGUMENTS:
a: An array to be analyzed by successive sweeps using effecto.
orders: The orders of the margins selected for computation of effects. The

argument orders is matched to the rows of margins. The default is all
orders. The orders argument is ignored if margins is not missing.

margins: A list or matrix of margins selected for computation of effects. The default
is all margins. 4

sun: Summary statistic function, returning a vector of statistics for each
successive effects, residuals and parent array - see effecto.

fun: Function used to sweep out the margins.

Optional additional arguments to fun. These are passed unchanged.

VALUE:
A named list of results.

margins: The sequence of margins.
df.1 A matrix of degrees of firedom for effects, residuals and parent arrays at

each step. Each row of df is the df component of a single iteration of
effectO. T7he row labels of the matrix are pasted subsets of
names(dimnames(a)) or of U:ength(dim(a))

ss: An array or matrix of summary statistics. If ssfun returns a vector with
non-null names attribute then that names attribute is the 3rd element of
dimnames(ss).

effects: List of arrays of effects. Each element of the list is the effects component
of a single iteration of effecto.

residuals: List of arrays of residuals.

EXAMPLES:
anova(a) # full anova by means
anova(a,orders-c(O,l)) # main effects only
3-way median polish with alternative summary statistics:
"mad" <- function(x) median(abs(x - median(x)))
"ssfr' <- function(x) {res <- asreal(c(mad(x)/qoorrm(O.75), sqrt(var(c(x))),

length(boxplot(x,plot--F)$out)))
names(res) <- c('scaled mad", "std dev', "outliers'); res I

anova(a,margins=lhst(O, 1,2,3,l,2,3,l,2,3),ssfun~ssfffun=median)

2 anova S Functions

SEE ALSO:
effect
ailsubsets

effect Analysis of a multi-way array e~c

USAGE:

effect(a, margin, ssfun=function(x)sum(x^2), fun=mean....)

ARGUMENTS:
a: A numeric array, or a list containing a numeric array called residuals. The

array should have attributes constraints and constraintsdf. These attributes
are initialized by as.effectso.

margin: The subscripts (integer, logical or character) over which the effects are
computed. 0 is permissible and gives an overall effect. If margin is logical
it must have length the number of dimensions of the array. If margin is a
character vector margin it is matched to the names attribute of
diraames(a). margin="overall" matches dimension 0.

ssfun: Function to compute a vector of summary statistics. The default is sum-of-
squares.

fun: Function used to compute the effects.

Optional additional arguments to fun. These are passed unchanged.

VALUE:
A named list of results.

effects: The computed effects. An array with dimension dim(a)[margin].
d. The degrees of freedom (df) of the effects, residuals, and parent arrays.

These are determined by the constraints attribute (logical), the constraintsdf
attribute (integer), and margin. The entries in constraintsdf are the partial
products of dim(a)-I (or dim(a$residual)-l), which are the df associated
with each margin of the array. The parent df is the sum of the margin
degrees of freedom corresponding to the TRUE elements of constraints(a)
(or constraints(a$residual)). This constraints vector is updated by the
margins that are subordinate to margin (see subordinateso). This is the
constraints attribute of the residuals (below) and determines the residuals
degrees of freedom. The effects degrees of freedom is the difference.

ss: Vector or matrix of summary statistics computed on the array of residuals
or the array of effects. The three elements or columns of ss are the effects,
residuals, and parent summaries.

residuals: Array of residuals with the same dimension as a or a$residuals. The

N'

S Functions mod 3

residuals array contains the updated constraints attribute, and also inherits
the subordinatesdim and dimnames attributes from a or a$residual.

arayofeffects: Array of effects with the same dimension as a or a$residuals.

EXAMPLES:
> is.effects(a)
[1) F # a has no constraints and constraintsdf attributes
" a <- as.effects(a) # initialize the missing attributes
" aO <- effect(aO) # take out grand mean
> aO.13 <- effect(aO,c(1,3)) #2-way effects
" nO.13.1 <- effec(aO.13,1) # this effects component is 0
" names(dimnames(a)) <- NULL
" effect(a,"anything")$df # this is overall analysis by default
" names(dimnames(a))<-c("method","material","layer')
• effect(a. (" ,thod","layer"))$df # two-way analysis on method and layer
one-way analysis by medians with logical margin:
> effect(ac(TF,F),fun=median)$df

SEE ALSO:
is.effects
as.effects
subordinates .

anova

rood Conversion of an integer to arbitrary base mood [,

USAGE:
mod(numbers, base=2, ncol=floor(iog(max(numbers+0.00001))/Iog(base)))

ARGUMENTS:
numbers: A vector of positive integers to be converted.
base: Base used in the conversion, default 2.
ncol: Number of columns in the matrix of results.

VALUE:
A matrix with one row for each element of numbers. Each row contains
positive integers in the range 0, 1, ... , base-1. The least-significant digit is
on the right. If base-2 then the matrix is logical. A logical matrix is
equivalent to a matrix of 0's (F) and l's () for arithmetic operations.

if

4 mod S Functions

EXAMPLES:
binary conversion of 0:7
> amod(0:7)

[,1]1 [.[31,.,, .,

[I,] F F F
[2,] F F T
[3,] F T F
[4,1 F T T
[5,] T F F
[6,] T F T
[7,] T T F
[8,] T T T
modconc0 is the inverse of modo
> modconc(a)

[1101234567
modconc(abase= 10) gives the binary representation of 0:7.
> modconc(a,10)
[1] 0 1 10 11 100101 110111
mod(.,base=10) converts integers into rows of digits
> mod(seq(5,105,20),10)

1,11[[2] [,3]

[1,] 0 0 5
[2,] 0 2 5
[3,] 0 4 5
[4,] 0 6 5
[5,] 0 8 5
[6,] 1 0 5
modconco is again the inverse of modo
> modconc(mod(seq(5,105,20), 10),10)
[1] 5 25 45 65 85 105

SEE ALSO:
modconc
odometer

p I

%

S Functions subordinates 5

mdoc Concatenate matrix of integers into a single column modconc

USAGE:
modconc(mat, base=2)

ARGUMENTS:
mat: Matrix of integers each in the range 0, ..., base-1. Each row the matrix is

represents a non-negative integer, modulo base, with the least-significant
digit on the right, mat is typically the result of mod0

base: The base to be used in the concatenation, default 2.

VALUE:
A vector of integers. Each integer is the sum of the entries in the

corresponding row of the matrix multiplied by base**(ncol(mat):1 - 1)

EXAMPLES:
See documentation for function modO

SEE ALSO:
mod
odometer

subordiLnatesl Binary-subordinate numbers subordlinates

USAGE:
subordinates(vec)

ARGUMENTS:
vec: A vector of non-negative integers

VALUE:
The vector of positive integers y with binary expansion subordinate to the
vector x, where x is defined by x[vec]=T and x[!vec]=F. y is subordinate to
x if !any(y[!x]), i.e. an element of y is true only if the same element of x is
true.

EXAMPLES:
> subordinates(c(1,3))
[110 14 5

'I.

6 subordinates S Functions

The binary expansions of 0, 1, 4 and 5 are FFF, FFr, TFF and TFT.
Each is subordinate to TFIT, which has T's in positions 1 and 3.

SEE ALSO:

effect
mod
modconc

subsets compute all subsets 91 sets ,

USAGE:
subsets(a, sizes=NULL, log=FALSE)

ARGUMENTS:
a: A vector or array. If a is a single integer then subsets computes all subsets

of l:a. If a is a vector with length >= 2 then subsets computes all subsets of
a. If a is an array then subsets computes all subsets of names(dimnames(a))
or of l:length(dim(a)) if names(dimnames(a)) is null. Note: a vector is an
array when its dim attribute is not null. 0

sizes: The sizes of the subsets returned. Default all sizes, including 0. 'N
lo: The subsets are returned as a logical matrix. Default FALSE.

VALUE:

Subsets in lexicographic order arranged in a list with numeric or character
vectors for elements. When log=TRUE the value of subsets is a logical
matrix. The logical matrix is the output of mod with rows sorted into
lexicographic order and the order of columns reversed. The null, size 0,
subset is 0 if a is a single integer or a is an array with names(dimnames(a))
null. The null subset is NA if a is a vector with length>=-, and is "overall"
if a is an array with non-null names(dimnames(a)).

EXAMPLES:
" subsets(3) # all subsets of 1:3 including 0
> x <- 1:3
" subsets(xlog-T) # al subsets of 1:3 as a logical natrix
> y <- ("a",',"c")
" subsets(y,c(O,2)) # list of subsets of sizes 0 and 2
" subsets(anarray) # all subsets of dimensions of the array anarray
" subsets(as.array(x)) # the two trivial subsets of the array x

,'

- 5kS

S Functions subsets 7

SEE ALSO:

anova
leaps S

-' -'.

0

I' .

S functions for analysis of variance and averages

"anova"l <-

function(a, orders = l:length(dim(a)) - 1,
margins = subsets(as.array(a), orders, T),
ssfun =function(x)sum(x^2), fun = mean, ..

This is a simple driver for the effect() function. a,

m <- margins
if(is.list(a)) a <- a[["residuals"JJ
a <- as.effects(a)
effects <- df <- ss <- residuals <- rowlabels <- NULL

collabels <- c("leffects", "residuals", "parent")
if(all(names(dimnames(a)) == I'l)) namesvec <- seq(length(dim(a)))
else (namesvec <- names (dirnnames (a)) ;names (namesvec)<-namesvec)
if(is.list(m)) (

n <- length(m)
getf <- substitute(function(i)
as.vector (m([ii]))

else
n <- nrow(m)
getf <- substitute(function(i)
as. vector (m [i, J))

for(i in l:n)
margin <- getf(i)
a <- effect(a, margin, ssfun, fun, ...

effects <- c(effects, a["effects"])
df <- rbind(df, a[["~df"I))
ss <- rbind(ss, a[[Iss")J)
residuals <- c(residuals, ajIlresiduals"l))
if(all(margin == 0)) rowlabels <- c(rowlabels, "overall")
else rowlabels <- c(rowlabels, paste(namesvec~marginj, collapse

dimnarnes(df) <- list(rowlabels, collabels) J

rratio <- nrow(ss) /length(rowlabels)
if(rratio > 1) 0

ss <- apermn(array(ss, c(rratio, dim(df))),c(2,3,l))
dimnames (ss) <- list (rowlabels, collabels,

names (ssfun(a E["residuals")J)))

else dimnames(ss) <- list(rowlabels, collabels)
names~effects) <- names~residuals) <- rowlabels
list (margins = m, df = df, ss = ss, effects =effects, residuals=

residuals)

"as.effects" <-

function (x)

initialize the constraintcodes and constraintsubdim attributes
of an array. There are 2"subdim codes.

if(!is.effects(x))
revsubdim <- rev(dim(x) - 1)
ncodes <- 2"length(revsubdim)
prodrow <- substitute(function(y)
prod(revsubdim~yl))
attr(x, "constraints") <- rep(F, ncodes)
attr(x, "constraintsdf") <- apply(mod(seq(0, ncodes -1)), 1, prodrow)

x

"constraints" <-

funct ion (x)
attr(x, "constraints")
"constraints<-" <-

- - - - - - - -- - - - - - - - - - - - - -

S functions for analysis of variance and averages0

function(x, ct)
eval(substitute(attr(x, "constraints") <- ct), local =sys.parent(l))
"constraintsdf" <-

function (x)
attr(x, "constraintsdf")
"constraintsdf<-" <-

function(x, ct)
eval(substitute(attr(x, "constraintsdf") <- ct), local =sys.parent(1))
"effect" <-

function(a, margin, ssfun =function(x)
sum(x^2), fun = mean, ..

compute a table of effects (with array of effect) a

if(is.list(a)) a <- a[[Elresiduals"JJ
if(is.character(margin)){ margin <- match(margin, c("loverall", names(

dimnames~a)))) - 1
margin <- margin(!is.na(marginf)

"Data is not an effects array; use as.effectso")
if(is-character(fun)) fun <- get (fun)
if(is.character(ssfun)) ssfun <- get (ssfun)
if(all(margin == 0))

effects <- fun(as.vector(a), ..

names(effects) <- "overall"
eff <- array~effects, dim(a))

else
seqq <- seq(length(dim(a)))
if(is.logical(margin)) margin <- seqq~margin]
perm <- c(margin, seqq[- margin])
effects <- apply(a, margin, fun, ...) 0

eff <- aperm(array(effects, dim(a)[permD), order(pern))

res <- a - eff
attributes(res) <- attributes(a)
dimnames(eff) <- dimnames(a)
attr(res, "constraints"l)(subordinates(margin) + 1] <- T
df.oritotal <- prod(dim(a))
df.parent <- df.oritotal - sum(constraintsdf(a)[constraints(af))
df.residuals <- df.oritotal - sum(constraintsdf(res) [constraints (res)])
df.effects <- df.parent - df.residuals
df <- c(df.effects, df.residuals, df.parent)
ss <- drop(matrix(c(ssfun(eff), ssfun(res), ssfun(a)), ncol = 3))
list (effects = effects, df = df, ss = ss, residuals = res, arrayofeffects

=eff)

"is.effects" <-

function (x)
!is.null(attr(x, "constraints")) & !is.null(attr(x, "constraintsdf"))
"mod" <-

function(numbers, base = 2, ncol = floor(log(max(numbers + le-05))/log(base)))

convert numbers to a matrix mod base
to reexpress as a single vector use
modconc (provided base <=10)

if(any(numbers < 0)) stop("lnurnbers must be non-negative")
mod <- base ** (ncol:0)
mode(mod) <- "integer"
res <*- outer(nuxnbers, mod, "%%I) %% base
if (base =- 2) mode(res) <- "logical"
re s

"'modconc" <-

L function(mat,
base - 2)

S functions for analysis of variance and averages

convert a matrix (or vector) to a vector (or scalar)
using base arithmetic

if(any(mat < 0) 1 any(mat >= base)) stop(paste("digits must be between 0 and",
base - 1, "inclusive"))

if(len(dim(mat)) ==1) mat <- matrix(mat, nrow =1

maxn <- ncol(mat) -1
mod <- base ** (maxn:0)
as.integer(mat %*% mod)

"subordinates" <-

function (vec)

Find the numbers with binary expansions that are all dominated by
* (or equal to) the binary number with T's in the positions given
in vec. For example, the binary number with T's in the positions
1 and 3 (veo=c(1,3)) dominates or is equal to TFT, FFT, TFF, FFF
which expand to 5,1.3 and 0 respectively.

if (vec == 0) return (0)
ncodes <- 2^length(vec)
vec <- rev(sort(vec))
ncol <- vec~lJ
mod2 <- mod(seq(O, ncodes - 1))
mod2full <- matrix(F, ncodes, nool)
mod2full[, nool + 1 - vec) <- mod2
modconc (mod2 full)

"subsets" <-

function(a, sizes = NULL, log = FALSE)

Compute the complete list of margins for the vector or array.
lnames <- NULL

if (is.array(a))
nc <- length(dim(a))
if(!all(names(dimnames(a)) I'll")) seqq <- c("loverall", names(

dimnames (a)))
else seqq <- O:nc

else if(length(a) > 1)
no <- length(a)
seqq <- c(NA, a)

ele(no <- as.integer(a)

seqq <- 0:nc

n <- 2 ** no
mat <- mod(0:(n - 1))[, nc:13
isizes <- apply(mat, 1, sum)
iperm <- order(isizes, 1:n)
if(!missing(sizes)) iperm <- iperm[!is.na(match(isizes[ipermJ, sizes))
mat <- mat~iperm,
if(log) return(mat)
mat <- cbind(c(T, rep(F, n - 1))[iperm), mat)
11 <- NULL

Ifor(i in 1:nrow(mat)) 11 <- c(11, list(seqq~matfi,J)
11

" apply" <-

ffunction(X, margin, FUN, ...)

apply modified to return names attribute if a vector result and
dimnames not null; also handles margin=0 (returns names "overall").

if(is.character(FUN)) FUN <- get (FUN)
if (margin -- 0)1

., - .i'4 11 1' - -(&%

S functions for analysis of variance and averages

ans <- FUN(as.vector(X), ..

if(!is.null(dimnames(X))) names(ans) <- "overall"
return Cans)

d <- dim(X)
dn <- dimnames WX
if(!is.null(dn)) dn <- dn~margin]
ans <- NULL
permvec <- c(seq(l, length(d)) [- margin], margin)
newX <- aperm(X, c(seq(l, length(d)) [- margin), margin))
subdim <- d[- margin]
newX <- matrix (newX, prod (subdim), prod (d[marginJ))
if(length~subdim) > 1) for(i in l:ncol(newX)) ans <- c(ans, FUN(array(lewX[,

i], subdim), ...))

else for(i in l:ncol(newX)) ans <- c(ans, FUN(newX[, iJ,..)
if(length(margin) 1= && length(ans) == ncol(newX))

names~ans) <- dnE[l])
return (ans)

else if(length(ans) ==ncol(newX)) return(array(ans, dimargin), dn))
else if(length(ans) %% ncol(newX) ==0)f

if(is.null(dn)) return(array(ans, c(length(ans)/ncol(newX),
d~margin]))))

else return(array(ans, c(length(ans) /ncol(newX), d~margin]),
c(list(NULL), dn)))

else return(ans)

"anovatable" <-

function (a)
convert structure returned by anova() into an anovatable
nr <- nrow(a$df)
df <- c(a$df[,lJ,a$df[nr,2)
ss <- c(a$ss(,l],a~ss[nr,2J)
ms <- ss/df
fv <- ms/ms [nr+l]
pv <- l-pf(fv,df,df[nr+l])
at <- cbind(df,ss,ms,fv,pv)
dimnames (at) <- list (c (dimnames (a$df) [[1]) , "residual"),

c ("df"1, "ss", ins", "F-value"l, "P-value"))
list (anovatable=at,effects=a~effects,

residuals=a$residuals [[length (a$residuals)]])

"'listapply" <-
function (lis,ind, FUN="){
combine elements of list according to the indices ind
(hashintlist may be used to create an index vector ind from a list)
if(is.character(FUN)) FUN <- get(FUN) '-

seqq <- seq(length(ind))
dup <- duplicated(ind)
whr <- seqq[!dup)
newlis <- NULL
res <- list()
for(i in whr){

inn <- ind[i]
tot <- 0
for(j in seqq[ind==inn]) tot <- FUN(tot,lis[[jl))
res <- c(res,list (tot))

names (res) <- names(lis) [whr]
res

"intlisttoint" <-

f unction (lis)
I~ %~

* q .*. '.1 %

S functions for analysis of variance and averages

Hash a list of positive-integer vectors.
Expand the i'th object in the list into the integer with
binary expansion with l's in the given positions
* For example c(1,3) expands to 5.
#

val <- integer(length(lis))
for(i in seq(along=lis))f

vec <- lis(Ci]]
if(vec =- O){val~i) _O;next)
m <- rep(F,max(vec))
mfvec] <- T
val[iJ <- as.integer(sum(n 2**seq(O,length(m)-l)))

va 1

"polish" <-

function(m)(
organize result of anova when polishing is used
if(!is.list(m$margins)) stop("'margins component must be a list")
list (df--m$df, ss--m$ss,effects=listapply(m$effects, intlisttoint (m$margins)),

residuals=m$residuals f length (m$residuals)])

